RGD Reference Report - Role of sulfonylurea receptor type 1 subunits of ATP-sensitive potassium channels in myocardial ischemia/reperfusion injury. - Rat Genome Database

Send us a Message



Submit Data |  Help |  Video Tutorials |  News |  Publications |  Download |  REST API |  Citing RGD |  Contact   

Role of sulfonylurea receptor type 1 subunits of ATP-sensitive potassium channels in myocardial ischemia/reperfusion injury.

Authors: Elrod, JW  Harrell, M  Flagg, TP  Gundewar, S  Magnuson, MA  Nichols, CG  Coetzee, WA  Lefer, DJ 
Citation: Elrod JW, etal., Circulation. 2008 Mar 18;117(11):1405-13. Epub 2008 Mar 3.
RGD ID: 2301903
Pubmed: PMID:18316485   (View Abstract at PubMed)
DOI: DOI:10.1161/CIRCULATIONAHA.107.745539   (Journal Full-text)

BACKGROUND: Opening of cardiac ATP-sensitive potassium channels (K(ATP) channels) is a well-characterized protective mechanism against ischemia and reperfusion injury. Evidence exists for an involvement of both sarcolemmal and mitochondrial K(ATP) channels in such protection. Classically, cardiac sarcolemmal K(ATP) channels are thought to be composed of Kir6.2 (inward-rectifier potassium channel 6.2) and SUR2A (sulfonylurea receptor type 2A) subunits; however, the evidence is strong that SUR1 (sulfonylurea receptor type 1) subunits are also expressed in the heart and that they may have a functional role. The aim of this study, therefore, was to examine the role of SUR1 in myocardial infarction. METHODS AND RESULTS: We subjected mice lacking SUR1 subunits to in vivo myocardial ischemia/reperfusion injury. Interestingly, the SUR1-null mice were markedly protected against the ischemic insult, displaying a reduced infarct size and preservation of left ventricular function, which suggests a role for this K(ATP) channel subunit in cardiovascular function during conditions of stress. CONCLUSIONS: SUR1 subunits have a high sensitivity toward many sulfonylureas and certain K(ATP) channel-opening drugs. Their potential role during ischemic events should therefore be considered both in the interpretation of experimental data with pharmacological agents and in the clinical arena when the cardiovascular outcome of patients treated with antidiabetic sulfonylureas is being considered.

RGD Manual Disease Annotations    Click to see Annotation Detail View
TermQualifierEvidenceWithReferenceNotesSourceOriginal Reference(s)
Myocardial Reperfusion Injury  ISOAbcc8 (Mus musculus)2301903; 2301903 RGD 
Myocardial Reperfusion Injury  IAGP 2301903 RGD 

Objects Annotated

Genes (Rattus norvegicus)
Abcc8  (ATP binding cassette subfamily C member 8)

Genes (Mus musculus)
Abcc8  (ATP-binding cassette, sub-family C member 8)

Genes (Homo sapiens)
ABCC8  (ATP binding cassette subfamily C member 8)


Additional Information