RGD Reference Report - The regulation of mitochondrial morphology: intricate mechanisms and dynamic machinery. - Rat Genome Database

Send us a Message



Submit Data |  Help |  Video Tutorials |  News |  Publications |  Download |  REST API |  Citing RGD |  Contact   

The regulation of mitochondrial morphology: intricate mechanisms and dynamic machinery.

Authors: Palmer, CS  Osellame, LD  Stojanovski, D  Ryan, MT 
Citation: Palmer CS, etal., Cell Signal. 2011 Oct;23(10):1534-45. doi: 10.1016/j.cellsig.2011.05.021. Epub 2011 Jun 13.
RGD ID: 10402101
Pubmed: PMID:21683788   (View Abstract at PubMed)
DOI: DOI:10.1016/j.cellsig.2011.05.021   (Journal Full-text)

Mitochondria typically form a reticular network radiating from the nucleus, creating an interconnected system that supplies the cell with essential energy and metabolites. These mitochondrial networks are regulated through the complex coordination of fission, fusion and distribution events. While a number of key mitochondrial morphology proteins have been identified, the precise mechanisms which govern their activity remain elusive. Moreover, post translational modifications including ubiquitination, phosphorylation and sumoylation of the core machinery are thought to regulate both fusion and division of the network. These proteins can undergo several different modifications depending on cellular signals, environment and energetic demands of the cell. Proteins involved in mitochondrial morphology may also have dual roles in both dynamics and apoptosis, with regulation of these proteins under tight control of the cell to ensure correct function. The absolute reliance of the cell on a functional mitochondrial network is highlighted in neurons, which are particularly vulnerable to any changes in organelle dynamics due to their unique biochemical requirements. Recent evidence suggests that defects in the shape or distribution of mitochondria correlate with the progression of neurodegenerative diseases such as Alzheimer's, Huntington's and Parkinson's disease. This review focuses on our current understanding of the mitochondrial morphology machinery in cell homeostasis, apoptosis and neurodegeneration, and the post translational modifications that regulate these processes.

Molecular Pathway Annotations    Click to see Annotation Detail View

RGD Manual Annotations

Objects Annotated

Genes (Rattus norvegicus)
Dnm1l  (dynamin 1-like)
Fis1  (fission, mitochondrial 1)
Gdap1  (ganglioside-induced differentiation-associated-protein 1)
Mff  (mitochondrial fission factor)
Mfn1  (mitofusin 1)
Mfn2  (mitofusin 2)
Mief1  (mitochondrial elongation factor 1)
Mief2  (mitochondrial elongation factor 2)
Mtfp1  (mitochondrial fission process 1)
Opa1  (OPA1, mitochondrial dynamin like GTPase)
Phb2  (prohibitin 2)
Pld6  (phospholipase D family, member 6)
Sh3glb1  (SH3 domain -containing GRB2-like endophilin B1)
Stoml2  (stomatin like 2)

Genes (Mus musculus)
Dnm1l  (dynamin 1-like)
Fis1  (fission, mitochondrial 1)
Gdap1  (ganglioside-induced differentiation-associated-protein 1)
Mff  (mitochondrial fission factor)
Mfn1  (mitofusin 1)
Mfn2  (mitofusin 2)
Mief1  (mitochondrial elongation factor 1)
Mief2  (mitochondrial elongation factor 2)
Mtfp1  (mitochondrial fission process 1)
Opa1  (OPA1, mitochondrial dynamin like GTPase)
Phb2  (prohibitin 2)
Pld6  (phospholipase D family member 6)
Sh3glb1  (SH3-domain GRB2-like B1 (endophilin))
Stoml2  (stomatin (Epb7.2)-like 2)

Genes (Homo sapiens)
DNM1L  (dynamin 1 like)
FIS1  (fission, mitochondrial 1)
GDAP1  (ganglioside induced differentiation associated protein 1)
MFF  (mitochondrial fission factor)
MFN1  (mitofusin 1)
MFN2  (mitofusin 2)
MIEF1  (mitochondrial elongation factor 1)
MIEF2  (mitochondrial elongation factor 2)
MTFP1  (mitochondrial fission process 1)
OPA1  (OPA1 mitochondrial dynamin like GTPase)
PHB2  (prohibitin 2)
PLD6  (phospholipase D family member 6)
SH3GLB1  (SH3 domain containing GRB2 like, endophilin B1)
STOML2  (stomatin like 2)


Additional Information